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Certain effects, caused by rotating turbulent fluid flows in the presence of gravitational force, for transport
of particles dispersed in fluid are suggested and quantified through kinetic or probability density function
approach based macroscopic equations. These resulexacewhen turbulent fluctuations in fluid velocity
along the particle path have Gaussian distribution.
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The frequent existence of two-phase particle/droplet ladeerations. Heref’ and f are components of°=-Q X (Q
turbulent flows in nature and manmade systems continues t&r) andf9=f9, respectively, withf9=-(GM/r%) and posi-
intrigue both physicists and engineers in developing prediction vector of particler andr=|r| for the situation of pro-
tive theory/model for their complete description. A variety of toplanetary nebula or disks. Als@, is the gravitational con-
phenomena related to dispersed phase of particles in turbdtant andM is the mass responsible for gravitational force.
lent flows have been discovered, such as, turbophof&kis Extracting the information for collective behavior of par-
preferential distributiorj2], turbulent thermal diffusion, bar- ticles from the Lagrangian Eql) requires statistical ap-
odiffusion, anomaly, and intermitten¢$®]. A recent study by proaches, such as, Reynolds averaged Navier-Stokes
Elperinet al. [4] further suggests effects of fast rotation of (RANS) type and PDF approaches.
fluid on the dynamics of dispersed phase suspended in tur- The RANS approach aims at obtaining the closed aver-
bulent fluid flows which has relevance in important industrialage, eithei1) nonweighted average ¢2) density-weighted
and natural situations, such as, protoplanetary nebula angleragg13], equations from the instantaneous equations for
disks [5]. Despite many advancemeri, it remains chal- number densityn(x,t) and velocity fieldV;(x,t) of the dis-
lenging to come up with a unique predictive theory/modelpersed phase in physical spaceand timet, e.g., see Ref.

useful for engineering purposes and also capable in quantj14]. For the situation governed by E¢l), instantaneous
fying various intrinsic effects and phenomena. In receniequations are

years, the probability density functia®DF) approach has

shown promise for quantitative predictions and in capturing anldt+a(nVy)lax; =0, (2
interesting phenomen&@-11]. In continuation of our previ-

ous efforts on the PDF approaf®-12 in unifying different N N _ _

aspects of particle/droplet-laden turbulent flows, this letter a Vi IX: = Bu(Ui = Vi) + 2€iapValdy + fi, 3)

considers application of the PDF for accurately quantifying :

effects in the situation of particle laden rotating turbulent@nd the nonweighted averaging of these are written as

flows. " -
We consider particles dispersed in rotating fluid flows NI+ ANCViDIG + Aoyl 3% =0, @
moving under the action of fluid drag force, forces due to "
rotation (Coriolis and centrifuga) and gravity. The trajec- M + <V->M + <Ut'%> = B,((U)) =(V)))
tory of each individual particle is governed by the Lagrang- ot . 24 . OXi ’
ian equations for particle positio (also denoted bx) and + 26,V + i (5)

velocity V; (also denoted by/):
g g Here( ) denotes ensemble averagé,is fluctuating part of
i Vi - ={(V. " = f i

—X':Vi, M U~V + 26V + T (1) Vi=(Vi)+v{, N=(n) and (V) represent mean density and

dt dt mean velocity, respectively. It should be noted that molecular
. ) . ) . diffusion and internal stresses of particle are neglected while

described in a coordinate system r_otatlng with constant angiting Eqs.(2)<(5). The internal stresses become important

gular velocity (2, and the subscript=1,2,3represents the ¢ finjte size particles and their modeling have been under

com_ponents _of 'ghe vector. Herqsy is the inverse of the persistent investigation by researcheesg., see Ref[15],

particle velocity time constant, defined based on the Stokes 5 references cited thergirin this paper, these stresses are

drag, U; is the carrier fluid velocity in the vicinity of the ot included as they do not arise in the PDF approach where
particle, €, is the Levi-Civita’'s alternating tensor, anfg particles are assumed as point particles.

=fC4+f9 i itati g
=f7+fJ accounts for centrifugd and gravitationaf? accel- Now, the unknown terménu!) and(v/'dv{'/ %) pose clo-

sure problems in Eq94) and (5), respectively. By using
stochastic calculus for the Wiener process, Elpeginal.
*Corresponding author. Email address: rvrpturb@uprm.edu [16,17 derived the expression fdnv{) under the presence
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of molecular diffusion and when’ is correlated over a very 5 [ o

short period of time. The expression is MNi =By | AU Ul (t]1))Gy(t]t),

0
(o’ = = IN(u{ v 19%)) = vV INI Xy, (6)
t "

wherer is the momentum relaxation time of random velocity 2 i,

\ : . = —u - 11
field v’ and the term{v{'av]/x;) is shown to be responsible %=h, 0 dt X (tlt2) / Gye(talt), (19

for two phenomena of turbulent thermal diffusion and barod-

iffusion in compressible fluid flow17] and effects in fast t d

rotating turbulent flow$4]. Recently, it is shown that the two i = B f dt2<ui”u}’(t|t2)>—ij(tzlt), (12
phenomena associated witfy{'dv;/Jx;) disappear forr 0 dt

=1/B, and this disappearance is absent in the PDF approach

based density-weighted average equations for veldGif9]. a::n d shorthanq r?otatioruj_’(t|t2) i_s used o represent
Extending the argument given in RgB] suggests that the Ny (X’V’t.|t.2). which is the flwd velocity fluctuation a_t time
effects in rotating turbulence obtained by Elpegiral. [4] in in t_he V|cm_|ty of the pa}lrncle that pzisses Fhrowglthh Ve
the framework of nonweighted average would also vanisHOCIty v at timet. Also u representg;li (x,1) in Eqs.(11) apd
for 7=1/8, and which seems to be dubious. And we think (12 @nd now onwards. The equation 181j(tz[1), Ot=tz, in
the density-weighted average based analysis more appropf€ Presence of rotation arfdbecomes

ate. >

. : d d U d
PDF approach: The density-weighted averageenoted ngjk(tzh) + ﬁvd—tejk - ﬁiji% - 26kabeana
by overbay of Egs.(2) and(3) yields i
— of
NGt + a(NV;)/ox; = 0, ) - &keji = 5t —ty). (13)
i

— A —V, r?vr',vj' For later convenience, expressions fof and y; are now

B,V + p +Vi_ax' L = B,(Uj) +{2€japVallp + T} written in different forms
1 n
N t 3 t ﬂu”
- J — ij J . Yi i
— Ty / -_— = diu AU'), - = J d Av; ’ (14)
[U”U’]axnln N* ALy, B Jo B Jo ax

(8)  whereAv;=[5dt,8,uy(t|t)[dG(t,|s)/ds] represents change

. . — _ in particle velocity due tog,u;(t|t,), during time O tos,
where for any |rEtantaneous varlabie A=(nA)/N, a’ is aloﬁg the trajecto>rly that pggszg tzhrouglv gt timet. Also
fluctuation inA=A+a’=(A)+a" over A. Also (a’)#0 and uj=u/(x,t) in Eq. (14).
a’#0. The unknown terms v/ and, in particularu; are The Egs.(10)<(13) areexactclosure solution for particle
difficult to model from the instantaneous equations.phase wheny, along the particle path, has Gaussian distri-
Whereas, the expression faf and equations for other un- bution and its statistical propertie&s'u!(t|t,))=u; and
known density-weighted terms can be obtained with ease ifyu;'/ axu/(t|t,)) are known. For non-Gaussian behavior,

PDF approactj7,8,10. third order correlations ofi’ would appear in the closure

Considering particles as point particles, use of Liouvillesplution and which are taken zero in the present analysis.
theorem and Lagrangian E@L) allow us to write the gov- The equation fou!:

erning equation for ensemble average of the phase space
densityW(x, Vv, t) of the particles, written as du'/dt= - p~top"lox; + vV + R, + R, (15

g,9d 9 __9J p wherep is fluid density,p” is fluctuation in fluid pressure;
{at * axiv' * aviW.}W\D— avi[,B,,(ui Wl © is kinematic viscosity of fluid,Ry=[({U;)/ dXy) + 2€3pp]

with wi=8,(U;) = B,vi+ €0 Qp+ fi. Here x and v are and F\’_i=(Vj—Uj)((9u{’/(9xj)+<_u}’(au_{’/axj)>. To obtain closed
phase space variables correspondingXtand V, respec- equation foru;, we substitute in Eq(15) model ~1/py)
tively, andu/ represents fluctuations in fluid velocity in the X (9p"/dx)+vV2u'=~(u//T,)+W; whereT_is integral time
vicinity of particle over the mean velocity;). In the kinetic ~ scale,W is a white noise ternte.g., see Refl19)), neglect
problem which can be tackled by various methods availabl§Mall time constant s¥;~U;, multiply Eq. (15) by uj(t|t,)
[7,8,10. Here by employing the Furutsu-Novikov-Donsker @nd take ensemble average. The resulting equation is
functional formula[18,13, the expression fofuW) can be

i du; KUj)
obtained as T3 ) — =+ 260y |, (16)
Bo(UW) = = [Nl I+ Jpuil dog = v WD, (10) T .
where various tensors are from which we obtain
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uy ”(tltz)> (U (tt)u] (tt)e ™ t2)’TL+u (17) %+ s f ittt le(tl\t

with L= (Ut )] (U] ) 2T {1 —e7L )

+]t dsé(s—t)m]a(U)/ﬁxa] by using perturbation expansion - J dth&i(tl|t)e—(t—tl)/TI'|_<%u/_r>

around the first term on the right-hand sidks) of Eq. (16). *Jo ax; !

Later for discussion, we would consider only the first expo- .

nential term in Eq(17). ky )B4 T [1 - t/?L)]

Using Eqgs.(9) and (10), the macroscopic equation for v

=[(W)dv is obtained identical to Eq.7). The equation for

density-weighted average of particle velocityV; + T_L (e t(B,+1T)) _ 1¢. (20)

=(1/N) fu{W)dv is identical to Eq(8) but with closure so- IgvTL +1

lution for B, u’ written as
Pt Here G}, = G(t,t) 5= 5y 1-€#"2]/ g, and

— J d—
B = =Ny~ INN= =)+, (18) d? d &<U )
TG M T J2Ck(t) + B, G~ .G~ 2ekabﬂbdt 2
and which accounts for interactions between fluid turbulence %
structures and particles. The macroscopic equatlorv‘fo,iq akaO 0, (21)
X

=(1/N) [ (v;- V)(vn V)(Wydv, in Eq.(8), is
and qu Uy representu”(x t), ug(x,t), respectively. The last

‘9Ujlvr,1 +Viﬁ+ Ei[N 7 ﬂ S ‘9\/‘ term on the rhs of Eq(20) gives the phenomena of turbulent
a Tax 19T N il = vivj PV Un o o, thermal diffusion and barodiffusio9] for compressible
B flows. Substituting solution fo}; from Eq. (21) into Eq.
N, — av (20), the second term on the rhs becomes equal to
- Zﬂuvj,vr; - )\kj %, )\knaxk + /“Jn + Mnj 0"Uk AU of,
- - B P uf /8U_A1 2eikp{loho = Al (22)
+ ZQb[Ejabvévrq + 6nabvé1vj,]- (19 ! K

While writing Eqs.(18) and(19), the density weighted aver- Where A= 59'tl[e_[(t_tl)/TL]fgldtzGo(tﬂt)Go(t1|t2)] and A,
age of various tensors is considered to be equal to their re= [idt,[e 1 "/TfL dt,GOty]t)(d/dtp) GOty |t,)].  The  first

spective instantaneous values, e\g.=\;;. term in Eq.(22) represents the contribution to particle phase
Various terms in Eqg8), (18), and(19), suggest different velocity due to the shear rate. The se_cond term in(28)
phenomena related to the transport of the particle phase. Th@n also be written in the form

term B3, dv{v// % in Eq. (8) accounts for the turbophoresis 2B Qpenid AUi(X, 1)/ ax]U))A,. This form suggests that the
[1,7] phenomenon The effects of rotation and gravity on thecomponent of fluid vorticity at particle location
turbophoresis can be quantified through EtQ). The last  {emd dUx(X,t)/ %]} in the direction of rotatiorf), produces a
term on the rhs of Eq(19) exhibits explicitly the effect of drift velocity for particle phase and whose origin is the Co-
rotation caused by the Coriolis force. Further, rotation andiolis force. This phenomenon was suggested by Elperin
gravity affectv/v;, through\;; and z; which are functionals €t @l [4] in the limiting case of fast rotation and when the
of G;. fluctuations in particle phase velocity is correlated over a
The term Z’);lfjabvaﬂb in Eq. (8), which is due to the short period in time. It should be noted that the present deri-

mean Coriolis force, contributes to the drift velocity of the vat_|rohne hlgztnt(()arsgciz “g”gtz';’r;z f(r)(;s%&:\r:.l,CIti(;/ei.lr?tgrt;ctions of
particle phase and/3, represents the drift velocity due to centrifugal and rawtgtlonal ch))rces acting on the particle
centrifugal and graV|tat|onaI forces. The first term on the rhs Swith turgulence vgelocn fluctuations at theg article |OF():a'[I0n
of Eq. (18) is responsible for turbulent diffusion of particles. For the discussion u>rl ose, we con5|der21 finite value for
The last two terms in Eq18) contains interesting phenom- . purpo PO

. ; . . . rotation only abouk; axis, i.e.2;=0,=0 andﬂﬁﬁ 0. Then,
ena for drift velocity of the particle when fluid variable$ the centrifugal part of, is given asfS=x Q ~ 8,02 and
along the particle path are correlated with finite time. Be-, gaip k1S9 K S

cause for correlations having delta function in time, thesetS contribution to the last term is equal to

two terms reduce to zero &, (t|t)=0 [9]. For finite corre- —,82A193[<u”&u %) = (U Ul xa)]. (23)
lation time, we describe the phenomena for casg4)alow
rotation, i.e.,Q), is small and(2) fast rotation. In case of a compressible flow at low Mach number of an

For slow rotation, using the first term in E@L7) for ideal gas obeying the equation of st&epRT:
u/u{(t[ty)), expanding the solution of E¢13) as Gy.= G

and using expressions for tensors given by E(G;S) (U oujl o) = (UiUAInCT) = In(B) /o, (24)
W|th incorporating apprommaﬂo(\u”(t|t1)u”(t|t1)) (uiuf whereP, T, andp are the pressure, temperature, and density
we obtain of the gas, respectively, and is the gas constar9,10].
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Thus, the first term in square brackets in E2B) contributes  lations ofu/(x,t) anddu{(x,t)/dx with velocity of particles,
to the phenomena of turbulent thermal diffusion and barodbetweers(<t) andt, present in the region near xcandt and
iffusion in compressible flows and the second term is nonpassing througlx at timet. Assuming exponential form for

zero for mcompressgble turbulent flow. The contribution of \ase correlations with integral time scéﬂLe[con3|stent with
the gravitational party=f9 of f, to the last term in Eq.22) Eq. (15)], the last two terms in Eq18) simplify to

is
Ny Ni(x,1) \ [t s
18;1{__“4_%} ~—(u i f dsds VM
k

X 0

1" " &fg " "
~ BFSU Ul XA, ﬁﬁxia—&(uj Ul ax)A,.  (25)

: . : (26)

Here the first term vanishes and the second term is nonzero
in incompressible flows. Equatiai24) suggests that the first and represent drift velocity. Under the fast rotation without
term in Eq.(25) contributes to the phenomena of turbulentgravity, Elperinet al. [4] obtained an approximate relation
thermal diffusion and barodiffusion of the dispersed phase ihdV;(x,t)/dx]=[27,(); €|ab(07Ub/(9Xa)/(l+4TZQka)] Using
compressible flow of an ideal gas. The second term in Eqjt in Eq. (26) then provides the dependence of the drift ve-
(25) is nonzero due to the finite variation & in space. locity on © similar to that obtained by Elperiet al. It

Now we show for fast rotation and without gravitational should be noted that this drift velocity does not vanish when
effect, drift velocity of particle exhibits trend similar to that =1/, which is the case in the framework of nonweighted
suggested by Elperiet al. [4]. For large value of timd, average, used by Elperat al. [4], as explained earlier in this
contributions to\;; and y; in Eq. (14) come from the corre-  paper.
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