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Certain effects, caused by rotating turbulent fluid flows in the presence of gravitational force, for transport
of particles dispersed in fluid are suggested and quantified through kinetic or probability density function
approach based macroscopic equations. These results areexactwhen turbulent fluctuations in fluid velocity
along the particle path have Gaussian distribution.
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The frequent existence of two-phase particle/droplet laden
turbulent flows in nature and manmade systems continues to
intrigue both physicists and engineers in developing predic-
tive theory/model for their complete description. A variety of
phenomena related to dispersed phase of particles in turbu-
lent flows have been discovered, such as, turbophoresis[1],
preferential distribution[2], turbulent thermal diffusion, bar-
odiffusion, anomaly, and intermittency[3]. A recent study by
Elperin et al. [4] further suggests effects of fast rotation of
fluid on the dynamics of dispersed phase suspended in tur-
bulent fluid flows which has relevance in important industrial
and natural situations, such as, protoplanetary nebula and
disks [5]. Despite many advancements[6], it remains chal-
lenging to come up with a unique predictive theory/model
useful for engineering purposes and also capable in quanti-
fying various intrinsic effects and phenomena. In recent
years, the probability density function(PDF) approach has
shown promise for quantitative predictions and in capturing
interesting phenomena[7–11]. In continuation of our previ-
ous efforts on the PDF approach[9–12] in unifying different
aspects of particle/droplet-laden turbulent flows, this letter
considers application of the PDF for accurately quantifying
effects in the situation of particle laden rotating turbulent
flows.

We consider particles dispersed in rotating fluid flows
moving under the action of fluid drag force, forces due to
rotation (Coriolis and centrifugal), and gravity. The trajec-
tory of each individual particle is governed by the Lagrang-
ian equations for particle positionXi (also denoted byX) and
velocity Vi (also denoted byV):

dXi

dt
= Vi,

dVi

dt
= bvsUi − Vid + 2eiabVaVb + f i , s1d

described in a coordinate system rotating with constant an-
gular velocityVb and the subscripti =1,2,3 represents the
components of the vector. Here,bv is the inverse of the
particle velocity time constanttp defined based on the Stokes
drag, Ui is the carrier fluid velocity in the vicinity of the
particle, eiab is the Levi-Civita’s alternating tensor, andf i
= f i

c+ f i
g accounts for centrifugalf i

c and gravitationalf i
g accel-

erations. Heref i
c and f i

g are components offc=−V3 sV
3 r d and fg= fgr , respectively, withfg=−sGM / r3d and posi-
tion vector of particler and r = ur u for the situation of pro-
toplanetary nebula or disks. Also,G is the gravitational con-
stant andM is the mass responsible for gravitational force.
Extracting the information for collective behavior of par-
ticles from the Lagrangian Eq.(1) requires statistical ap-
proaches, such as, Reynolds averaged Navier-Stokes
(RANS) type and PDF approaches.

The RANS approach aims at obtaining the closed aver-
age, either(1) nonweighted average or(2) density-weighted
average[13], equations from the instantaneous equations for
number densitynsx ,td and velocity fieldVisx ,td of the dis-
persed phase in physical spacex and timet, e.g., see Ref.
[14]. For the situation governed by Eq.(1), instantaneous
equations are

]n/]t + ]snVid/]xi = 0, s2d

]Vi

]t
+ Vj

]Vi

]xj
= bvsUi − Vid + 2eiabVaVb + f i , s3d

and the nonweighted averaging of these are written as

]N/]t + ]sNkVild/]xi + ]knvi9l/]xi = 0, s4d

]kVil
]t

+ kVjl
]kVil
]xj

+Kv j9
]vi9

]xj
L = bvskUil − kVild

+ 2eiabkValVb + f i . s5d

Here k l denotes ensemble average,vi9 is fluctuating part of
Vi =kVil+vi9, N=knl and kVil represent mean density and
mean velocity, respectively. It should be noted that molecular
diffusion and internal stresses of particle are neglected while
writing Eqs.(2)–(5). The internal stresses become important
for finite size particles and their modeling have been under
persistent investigation by researchers(e.g., see Ref.[15],
and references cited therein). In this paper, these stresses are
not included as they do not arise in the PDF approach where
particles are assumed as point particles.

Now, the unknown termsknvi9l andkv j9]vi9 /]xjl pose clo-
sure problems in Eqs.(4) and (5), respectively. By using
stochastic calculus for the Wiener process, Elperinet al.
[16,17] derived the expression forknvi9l under the presence*Corresponding author. Email address: rvrpturb@uprm.edu
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of molecular diffusion and whenvi9 is correlated over a very
short period of time. The expression is

knvi9l = − tNkvi9]v j9/]xjl − tkvi9vm9 l]N/]xm, s6d

wheret is the momentum relaxation time of random velocity
field vi9 and the termkvi9]v j9 /]xjl is shown to be responsible
for two phenomena of turbulent thermal diffusion and barod-
iffusion in compressible fluid flow[17] and effects in fast
rotating turbulent flows[4]. Recently, it is shown that the two
phenomena associated withkvi9]v j9 /]xjl disappear fort
=1/bv and this disappearance is absent in the PDF approach

based density-weighted average equations for velocityV̄i [9].
Extending the argument given in Ref.[9] suggests that the
effects in rotating turbulence obtained by Elperinet al. [4] in
the framework of nonweighted average would also vanish
for t=1/bv and which seems to be dubious. And we think
the density-weighted average based analysis more appropri-
ate.

PDF approach:The density-weighted average(denoted
by overbar) of Eqs.(2) and (3) yields

]N/]t + ]sNV̄jd/]xj = 0, s7d

bvV̄j +
]V̄j

]t
+ V̄i

]V̄j

]xi
+

]vn8v j8

]xn
= bvkUjl + h2e jabV̄aVb + f jj

− fvn8v j8g
]

]xn
ln N + bvuj9,

s8d

where for any instantaneous variableA, Ā=knAl /N, a8 is

fluctuation in A=Ā+a8=kAl+a9 over Ā. Also ka8lÞ0 and
a9Þ0. The unknown termsvn8v j8 and, in particular,uj9 are
difficult to model from the instantaneous equations.
Whereas, the expression foruj9 and equations for other un-
known density-weighted terms can be obtained with ease in
PDF approach[7,8,10].

Considering particles as point particles, use of Liouville
theorem and Lagrangian Eq.(1) allow us to write the gov-
erning equation for ensemble average of the phase space
densityWsx ,v ,td of the particles, written as

H ]

]t
+

]

]xi
vi +

]

]vi
wiJkWl = −

]

]vi
fbvkui9Wlg, s9d

with wi =bvkUil−bvvi +2eiabvaVb+ f i. Here x and v are
phase space variables corresponding toX and V, respec-
tively, andui9 represents fluctuations in fluid velocity in the
vicinity of particle over the mean velocitykUil. In the kinetic
or PDF Eq.(9), the unknown termkui9Wl poses a closure
problem which can be tackled by various methods available
[7,8,10]. Here by employing the Furutsu-Novikov-Donsker
functional formula[18,12], the expression forkui9Wl can be
obtained as

bvkui9Wl = − f]lki/]xk + ]mki/]vk − gigkWl, s10d

where various tensors are

lki = bv
2E

0

t

dt2kui9uj9stut2dlGjkst2utd,

gi = bv
2E

0

t

dt2K ]ui9

]xk
uj9stut2dLGjkst2utd, s11d

mki = bv
2E

0

t

dt2kui9uj9stut2dl
d

dt
Gjkst2utd, s12d

and shorthand notationuj9st u t2d is used to represent
uj9sx ,v ,t u t2d which is the fluid velocity fluctuation at timet2
in the vicinity of the particle that passes throughx with ve-
locity v at timet. Also ui9 representsui9sx ,td in Eqs.(11) and
(12) and now onwards. The equation forGijst2u td, ∀tù t2, in
the presence of rotation andf i becomes

d2

dt2
Gjkst2utd + bv

d

dt
Gjk − bvGji

]kUkl
]xi

− 2ekabVb
d

dt
Gja

−
]fk

]xi
Gji = d jkdst − t2d. s13d

For later convenience, expressions forli j and g j are now
written in different forms

li j

bv
=E

0

t

dskuj9Dvil,
g j

bv
=E

0

t

dsK ]uj9

]xi
DviL , s14d

whereDvi =e0
sdt2bvuk9st u t2dfdGkist2usd /dsg represents change

in particle velocity due tobvuk9st u t2d, during time 0 tos,
along the trajectory that passes throughx ,v at time t. Also
uj9;uj9sx ,td in Eq. (14).

The Eqs.(10)–(13) areexactclosure solution for particle
phase whenui9, along the particle path, has Gaussian distri-
bution and its statistical propertieskui9uj9st u t2dl;uij and
k]ui9 /]xkuj9st u t2dl are known. For non-Gaussian behavior,
third order correlations ofui9 would appear in the closure
solution and which are taken zero in the present analysis.
The equation forui9:

dui9/dt = − r−1]p9/]xi + n¹2ui9 + ua9Ria + Ri , s15d

wherer is fluid density,p9 is fluctuation in fluid pressure,n
is kinematic viscosity of fluid,Ria=fs]kUil /]xad+2eiabVbg
and Ri =sVj −Ujds]ui9 /]xjd+kuj9s]ui9 /]xjdl. To obtain closed
equation foruij , we substitute in Eq.(15) model −s1/r fd
3s]p9 /]xid+n¹2ui9=−sui9 / T̃Ld+Wi whereT̃L is integral time
scale,Wi is a white noise term(e.g., see Ref.[19]), neglect
sVj −Ujds]ui9 /]xjd which is strictly valid for particles with
small time constant soVi <Ui, multiply Eq. (15) by uj9st u t2d
and take ensemble average. The resulting equation is

duij

dt
= −

uij

T̃L

+ kua9uj9stut2dlS ]kUil

]xa
+ 2eiabVbD , s16d

from which we obtain
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kui9uj9stut2dl = kui9stut2duj9stut2dle−st−t2d/T̃L + uij
1 , s17d

with uij
1 =kua9st u t2duj9st u t2dlf2T̃LeiabVbh1−e−fst−t2d/T̃Lgj

+et2
t dsefss−td/T̃Lg]kUil /]xag, by using perturbation expansion

around the first term on the right-hand side(rhs) of Eq. (16).
Later for discussion, we would consider only the first expo-
nential term in Eq.(17).

Using Eqs.(9) and (10), the macroscopic equation forN
=ekWldv is obtained identical to Eq.(7). The equation for

density-weighted average of particle velocityV̄j
=s1/Ndev jkWldv is identical to Eq.(8) but with closure so-
lution for bvuj9 written as

bvuj9 = − l̄i j
]

]xi
ln N −

]

]xi
l̄i j + ḡ j s18d

and which accounts for interactions between fluid turbulence
structures and particles. The macroscopic equation forv j8vn8

=s1/Ndesv j −V̄jdsvn−V̄ndkWldv, in Eq. (8), is

]v j8vn8

]t
+ V̄i

]

]xi
v j8vn8 +

1

N

]

]xi
fNvi8v j8vn8g = − vi8v j8

]V̄n

]xi
− vi8vn8

]V̄j

]xi

− 2bvv j8vn8 − l̄kj

]V̄n

]xk
− l̄kn

]V̄j

]xk
+ m̄ jn + m̄nj

+ 2Vbfe jabva8vn8 + enabva8v j8g. s19d

While writing Eqs.(18) and(19), the density weighted aver-
age of various tensors is considered to be equal to their re-

spective instantaneous values, e.g.,l̄i j =li j .
Various terms in Eqs.(8), (18), and(19), suggest different

phenomena related to the transport of the particle phase. The
term bv

−1]v j8vn8 /]xi in Eq. (8) accounts for the turbophoresis
[1,7] phenomenon. The effects of rotation and gravity on the
turbophoresis can be quantified through Eq.(19). The last
term on the rhs of Eq.(19) exhibits explicitly the effect of
rotation caused by the Coriolis force. Further, rotation and

gravity affectv j8vn8 throughl̄i j andm̄i j which are functionals
of Gij .

The term 2bv
−1e jabV̄aVb in Eq. (8), which is due to the

mean Coriolis force, contributes to the drift velocity of the
particle phase andf j /bv represents the drift velocity due to
centrifugal and gravitational forces. The first term on the rhs
of Eq. (18) is responsible for turbulent diffusion of particles.
The last two terms in Eq.(18) contains interesting phenom-
ena for drift velocity of the particle when fluid variablesui9
along the particle path are correlated with finite time. Be-
cause for correlations having delta function in time, these
two terms reduce to zero asGjkst u td=0 [9]. For finite corre-
lation time, we describe the phenomena for cases of(1) slow
rotation, i.e.,Vb is small and(2) fast rotation.

For slow rotation, using the first term in Eq.(17) for
kui9uj9st u t1dl, expanding the solution of Eq.(13) as Gjk=Gjk

0

+Gjk
1 and using expressions for tensors given by Eqs.(11)

with incorporating approximationkui9st u t1duj9st u t1dl>kui9uj9l,
we obtain

−
]lkj

]xk
+ g j > − bv

2E
0

t

dt1kuj9uk9stut1dl
]Gkist1utd

]xi

− bv
2E

0

t

dt1Gki
1 st1utde−st−t1d/T̃LK ]uk9

]xi
uj9L

−K ]uk9

]xk
uj9LbvHT̃Lf1 − es−t/T̃Ldg

+
T̃L

bvT̃L + 1
fe−tsbv+1/T̃Ld − 1gJ . s20d

HereGjk
0 =G0st2u tdd jk=d jkf1−e−bvst−t2dg /bv and

d2

dt2
Gjk

1 st2utd + bv
d

dt
Gjk

1 − bvGji
0 ]kUkl

]xi
− 2ekabVb

d

dt
Gja

0

−
]fk

]xi
Gji

0 = 0, s21d

and uj9, uk9 representuj9sx ,td, uk9sx ,td, respectively. The last
term on the rhs of Eq.(20) gives the phenomena of turbulent
thermal diffusion and barodiffusion[9] for compressible
flows. Substituting solution forGki

1 from Eq. (21) into Eq.
(20), the second term on the rhs becomes equal to

bv
2K ]uk9

]xi
uj9LF− bv

]kUil
]xk

A1 − 2eikbVbA2 −
]f i

]xk
A1G , s22d

where A1=e0
t dt1fe−fst−t1d/T̃Lget1

t dt2G
0st2utdG0st1ut2dg and A2

=e0
t dt1fe−fst−t1d/T̃Lget1

t dt2G
0st2utdsd/dt2dG0st1ut2dg. The first

term in Eq.(22) represents the contribution to particle phase
velocity due to the shear rate. The second term in Eq.(22)
can also be written in the form
2bv

2kVbebikf]Uksx ,td /]xiguj9lA2. This form suggests that the
component of fluid vorticity at particle location
hebikf]Uksx ,td /]xigj in the direction of rotationVb produces a
drift velocity for particle phase and whose origin is the Co-
riolis force. This phenomenon was suggested by Elperin
et al. [4] in the limiting case of fast rotation and when the
fluctuations in particle phase velocity is correlated over a
short period in time. It should be noted that the present deri-
vation has no such limitations for particle velocity.

The last term in Eq.(22) represents the interactions of
centrifugal and gravitational forces acting on the particle
with turbulence velocity fluctuations at the particle location.
For the discussion purpose, we consider a finite value for
rotation only aboutx3 axis, i.e.,V1=V2=0 andV3Þ0. Then,
the centrifugal part offk is given asfk

c=xkV3
2−dk3xkV3

2, and
its contribution to the last term is equal to

− bv
2A1V3

2fkuj9]uk9/]xkl − kuj9]u39/]x3lg. s23d

In case of a compressible flow at low Mach number of an
ideal gas obeying the equation of stateP=rRT:

kui9]uj9/]xjl > kui9uj9l]flnkTl − lnkPlg/]xj , s24d

whereP, T, andr are the pressure, temperature, and density
of the gas, respectively, andR is the gas constant[9,10].
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Thus, the first term in square brackets in Eq.(23) contributes
to the phenomena of turbulent thermal diffusion and barod-
iffusion in compressible flows and the second term is non-
zero for incompressible turbulent flow. The contribution of
the gravitational partfk

g= fgxk of fk to the last term in Eq.(22)
is

− bv
2fgkuj9]uk9/]xklA1 − bv

2xi
]fg

]xk
kuj9]uk9/]xilA1. s25d

Here the first term vanishes and the second term is nonzero
in incompressible flows. Equation(24) suggests that the first
term in Eq.(25) contributes to the phenomena of turbulent
thermal diffusion and barodiffusion of the dispersed phase in
compressible flow of an ideal gas. The second term in Eq.
(25) is nonzero due to the finite variation offg in space.

Now we show for fast rotation and without gravitational
effect, drift velocity of particle exhibits trend similar to that
suggested by Elperinet al. [4]. For large value of timet,
contributions toli j andg j in Eq. (14) come from the corre-

lations ofuj9sx ,td and]uj9sx ,td /]xi with velocity of particles,
betweenss,td andt, present in the region near tox andt and
passing throughx at time t. Assuming exponential form for

these correlations with integral time scaleT̃L [consistent with
Eq. (15)], the last two terms in Eq.(18) simplify to

bv
−1F−

]lkj

]xk
+ g jG < −Kuj9

]Visx,td

]xi
LE

0

t

dsess−td/T̃L,

s26d

and represent drift velocity. Under the fast rotation without
gravity, Elperinet al. [4] obtained an approximate relation
f]Visx ,td /]xig<f2tpVieiabs]Ub/]xad / s1+4tp

2VkVkdg. Using
it in Eq. (26) then provides the dependence of the drift ve-
locity on V similar to that obtained by Elperinet al. It
should be noted that this drift velocity does not vanish when
t=1/bv which is the case in the framework of nonweighted
average, used by Elperinet al. [4], as explained earlier in this
paper.
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